Fourier Series

- Why are Fourier Series useful? 1) to represent discontinuous periodic functions with continuous periodic functions. 2) for boundary value problems (BVPs)
 - Examples of discontinuous periodic functions: square wave, triangle wave, sawtooth wave
- **Orthogonality**: Let *f* and *g* be periodic functions, both with period *T*. *f* and *g* are

orthogonal on an interval I = [-L, L] if $\int_{-L}^{L} f(x)g(x)dx = 0$.

- Combinations of sines with cosines (i.e. $f(x) = A_1 \cos(c_1 x)$ and $g(x) = A_2 \sin(c_2 x)$) are always orthogonal. Proof: $f(x) = A_1 \cos(c_1 x)$ is an even function, $g(x) = A_2 \sin(c_2 x)$ is an odd function. The product of an even function and an odd function is an odd function. The definite integral of an odd function on [-L, L] is always 0.
- Fourier Series
 - Let f(x) be a periodic function with period 2L, let F(x) denote its Fourier series.

$$F(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right), \text{ whereas}$$

$$a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx$$

• L_{-L} L_{-L} • Alternatively: $f(x) = \sum_{n=-\infty}^{\infty} c_n e^{\frac{ni\pi x}{L}}$, where $c_n = \frac{1}{2L} \int_{-L}^{L} f(x) e^{\frac{-ni\pi x}{L}} dx$.

- Proof of this formula using orthogonality and integrating the product of combinations of sines and cosines.
- \circ $\,$ These calculations can be quite tedious. So here are a few shortcuts:
 - If f(x) is odd, then the series will only contain the sine terms (i.e. $a_n = 0$).
 - If f(x) is even, then the series will not contain any sine terms (i.e. $b_n = 0$).
 - These are called the **Fourier sine series** and **Fourier cosine series** respectively.
- Theorem: If f(x) is continuous at x_o , then $f(x_o) = F(x_o)$. If f(x) is discontinuous

at
$$x_o$$
, then $F(x_o) = \frac{1}{2} \left(\lim_{x \to x_o^+} f(x) + \lim_{x \to x_o^-} f(x) \right).$